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LE'ITER TO THE EDITOR 
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Laboratoire de Physique des Solidest, Universitt de Paris-Sud, Batiment 510,91405 Orsay, 
France and lnstitut fur Theorie der Kondensierten Materie, Freie Universitat Berlin, 
Arnimallee 14,1000 Berlin 33, West Germany 

Received 11 December 1986 

Abstract. A general Monte Carlo renormalisation group transformation for the static as 
well as the kinetic properties of aggregates is formulated and applied to different growth 
models: particle aggregation (DLA), cluster aggregation (CICI) and invasion percolation(ip). 
The leading critical exponent is determined numerically. For DLA, the first correction to 
scaling exponent has been estimated as well. 

Recently, scaling ideas have been applied successfully to disordered structures that 
result from aggregation and growth processes. Both theoretical [ 1-41 and experimental 
[ 5-81 results were analysed systematically using this approach. With a few exceptions 
[9-131, the theoretical investigations have so far been limited to direct simulations of 
the growth process. 

The renormalisation group transformation (RG)  [ 14-16] provides a general 
framework for concepts such as universality and scaling in critical phenomena. The 
Monte Carlo RG ( MCRG) [ 17-20] is a powerful method for calculating critical properties 
and it has been applied extensively to spin systems. Here I propose to use the MCRG 

for growth processes, exploring the fact that this approach does not require the 
Hamiltonian to be known explicitly. 

First, let us define a MCRG for single-particle aggregation processes such as diffusion- 
limited particle aggregation [ 13 (DLA).  Consider a square lattice and associate with it 
a coarse grained block lattice. With every four neighbouring sites on the original 
lattice, one associates a block site (figure l ( a ) ) .  A cluster is grown on the original 
lattice by adding particles one by one and-through the RG-a cluster is grown on the 
coarse grained lattice in parallel. The rule for generating the block cluster is a modified 
majority rule (figures l (b ) - l (d ) ) :  ( i )  if no two neighbouring sites in a cell on the 
original lattice are occupied its block site is empty (figure 1( b)) ;  (ii) if two neighbouring 
sites are occupied the block site is occupied for the first RG studied ( R G ~ )  and empty 
for the second RG considered ( R G ~ )  (figure l (c ) )  and ( i i i )  if three or four sites of a 
cell are occupied its block site is always occupied (figure l ( d ) ) .  An additional rule 
ensures that every newly occupied block site is a nearest neighbour of the block cluster$; 
this is illustrated in figures l ( e )  and (f). The order of growth on the original lattice 
imposes the order of growth on the block lattice (along the arrows in figures l ( e )  and 

t Laboratoire associe au CNRS. 
$Without this rule the RG is defined in an extended configuration space. Numerical results indicate that 
this RG does not have a stable non-trivial fixed point for the models considered here. 
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Figure 1. Definition of the RG on a square lattice. ( a )  The original lattice (O), the block 
lattice (0) and the cells associated with each block site. ( b ) - ( d )  The modified majority 
rule defining the RG. The two RG studied occupy a block site if its cell is spanned in one 
(Rei) or in both (RGZ) directions. In ( e )  and (A the growth on the original lattice (small 
arrows) and the corresponding growth on the new lattice (large arrows) are shown. The 
intermediate blocks (*) are occupied (even if the corresponding cells are not spanned) to 
assure that every site occupied is always a nearest neighbour of the cluster. 

(f)). The RG defined in this way maps a single-particle growth process on exactly the 
same type of process on the coarse grained lattice. Analogous to the MCRG in critical 
phenomena [ 171, this statically defined RG also renormalises the dynamics. As a result, 
the growth rule on the block lattice is more complicated than the original one (and is 
not known explicitly). 

To calculate the critical properties without knowing the Hamiltonian explicitly, the 
chain rule proposed in [ 181 is used. This assumes implicitly that the aggregate can be 
described in terms of short-range interactions, i.e. H = K,, Z,, pipj + . . .  where 
pi = 0, 1 is the particle density at site i. To characterise the RG one studies the behaviour 
of short-range correlations ( (pip,)n, ,  etc) under the transformation. Figure 2 shows 
the different interactions used in this study. ‘Time-ordered’ correlations (8-12 in figure 
2) provide information on the growth aspect of the model. 

An alternative way of calculating the leading (fractal) exponent is to use the 
renormalisation of the total number of particles?. The fractal dimension D is extracted 
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Figure 2. Short-range interactions used to monitor the RG flow. Interactions 1-7 determine 
the static properties: interaction 1 measures the probability that a first neighbour (0) of 
a particle on the cluster (*) is occupied (the nearest-neighbour correlation), etc. Interactions 
8-12 characterise the dynamics (the time-ordered correlations): interaction 8 determines 
the probability that a second neighbour (0) along the bonds (chemical distance) is occupied 
after a given particle (*), etc. Similarly, interaction 11 is the average distance of the second 
neighbour (0) along the bonds added after a given particle (a ) .  

t This can be viewed as an RG with a single interaction So. 
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from N /  N ' =  ( R / R ' ) D  = b D  (here b = 2), analogous to the usual determination of D 
from the scaling relation N - RD.  

For DLA 20 clusters were generated, each with a fixed radius of gyration R = 100 
( N  = 9000) and six consecutive renormalisation transformations were applied to them. 
The short-range correlations of figure 2 were measured at each iteration (averaged 
over the whole cluster). The results of four iterations are shown in figure 3 for R G ~  

and they clearly show the trend towards a fixed point ( R G ~  converges bettter than RGI 

for this model). Because of finite-size effects the correlations decrease rapidly for 
iterations 5 and 6 ,  when the clusters have less than 50 particles. The results suggest 
that iteration n = 3 is closest to the fixed point. The dynamic correlations also converge 
but more slowly than the static ones and they are more sensitive to finite-size effects. 
To verify the RG flow, results from clusters with R = 50 are superposed in figure 3; 
they approach the R = 100 results rapidly. 
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Figure 3. The static (1-7) and the dynamic (8-12) correlations of figure 2 (normalised by 
the total number of particles) for n =0-4 iterations of the RG. Clusters with R = 100 (0) 
are compared with clusters with R = 50 ( x), shifted to the right. The correlations stabilise 
(arrows) indicating that n = 3 is closest to the fixed point. The statistical errors are 0.002 
(0.01) for statics (dynamics). 

The critical exponents are calculated using the equation 

= ( ( K & K , ) - ( K & ) ( K p ) )  (1) 

where K ,  are operators of the type defined in figure 2, primes refer to the renormalised 
system and the averages are both other unrenormalised and renormalised states. Table 
1 shows the eigenvalues of the transformation matrix dKh"*"/dKg' calculated from 
equation (1). For this calculation, the chemical potential K ,  = 0.000 08 ( N  = 12 000) 
is fixed, instead of the number of particles N or the radius R. The size of the parameter 
space was varied using the interactions S,, SI, S 2 . .  . (figure 2). The largest eigenvalue 
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increases both with the number of iterations and with the number of interactions, and 
near the fixed point it yields a fractal dimension to within 5 %  of the value D = 1.70 
from direct simulations. The second eigenvalue A 2  is also shown in table 1. It converges 
slower than A I .  The estimate for the dominant correction is y ,  = -0.38 * 0.18 and hence 
there is only a single relevant eigenvalue. The second method of calculating D, N /  N '  = 
bD, has been applied to clusters of fixed radius R = 100 and R = 50 and for R c i  and 
RGZ. The results are presented in table 2. With increasing n, D converges from below 

Table 1. The largest two eigenvalues A ,  and A ,  of RG2 (iterations n and n + 1 )  applied to 
the Witten-Sander model. 20 clusters with N = 12 000 on average (constant chemical 
potential) were analysed according to equation (1). The interactions used are So = P, p ,  
and SI ,  S ,  . . . , from figure 2. The first eigenvalue determines the fractal dimension 0, A ,  = 
bD, in good agreement with direct simulations. The second eigenvalue determines the 
leading corrections A ,  = b'2. From this one estimates y, =0.38i0.18.  The statistical errors 
are 0.1 for A ,  and 0.3 for A , .  The * indicates a complex eigenvalue. 

A ,  A2 

Number of interactions Number of interactions 

n 1 2 3 4 5 2 3 4 5 

0 2.74 2.90 2.88 2.85 3.03 1.32 1.40 1.64 * 
1 2.84 2.89 2.92 2.91 2.87 0.01 0.38 0.49 0.51 
2 2.96 2.97 2.97 2.99 2.97 0.59 0.81 0.82 0.74 
3 3.00 3.01 3.03 3.02 2.99 0.41 0.80 0.64 * 
4 2.96 3.11 3.16 3.17 3.13 0.78 0.89 0.88 * 

Table 2. Fractal dimension D ( n  + 1, n )  using N /  N ' =  ( R / R ' ) D  = bD for R G I  and R G ~  and 
for n = 0-3 for DLA, clcl and IP. Clusters of radius R = 100 and R = 50 are compared for 
DLA and IP, clusters of 4096 and 2048 particles for CICI.  The fixed point is indicated by 
(*). The statistical errors are 0.02. The values for D from direct simulations [l-41 are 1.70 
(DLA) ,  1.89 (IP) and 1.43 (cia). 

DLA 1P ClCl 

RG 1 2 2  1 2 2 1 2 2 

Size 100 100 50 82 98 50 4096 4096 2048 

nO 1.46 1.87 1.64 1.96 1.08 1.69 1.69 
1 1.52 1.75 1.87 1.69 1.94 1.95 1.22 1.53 1.53 
2 1.58 1.74* 1.79* 1.75 1.92 1.93 1.31 1.51* 1.50 
3 1.61* 1.79 1.82 1.78* 1.89* 1.91* 1.36 1.52 1.51* 

for RGi and from above for RGZ. For n > 4 finite-size effects become important. The 
R = 100 calculation gives slightly better results than the R = 50 calculation. All these 
results give a consistent picture in terms of a RG analysis. 

The same method has been applied to invasion percolation [3] ( IP) .  The convergence 
of the RG flow towards the fixed point is slower and using equation (1) one estimates 
D = 1.80 * 0.13 from 200 clusters with K ,  = 0.000 06 ( N  = 17 000). The precision is not 
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sufficient to estimate the second eigenvalue for this process. The values of D from 
NI"= b D  for clusters with R =98 and R = 50 and for RGI  and RG2 are shown in 
table 2 and agree well with direct simulations. 

Finally, this MCRG has been applied to c i c i  [2]. 20 clusters were grown hierarchically 
(I$"+') = 2"")) with 2048 (resp 4096) particles and analysed with m i  and R G ~ .  The 
renormalised clusters are not exactly monodisperse any more and only static properties 
have been considered. The growth rule for clusters which are not properly connected 
is slightly modified to take into account that the growth is hierarchical. The analysis 
of the correlations shows a flow towards a fixed point as for the other models and the 
value for D from N /  N'  = b D  is listed in table 2. 

The MCRG introduced here provides a systematic way of studying both static and 
kinetic aspects of aggregation processes. It gives accurate estimates for the fractal 
dimension and a fair estimate for the correction to scaling exponent for DLA. 

I acknowledge interesting discussions with J des Cloiseaux and have benefited from 
the support of the Deutsche Forschungsgemeinschaft. 
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